

ANL/NE-16/6

SHARP User Manual

Nuclear Engineering Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/scitech/)
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/

March 31, 2016

ANL-NE-16/6

prepared by

Y. Q. Yu, E. R. Shemon, and J.W. Thomas

Nuclear Engineering Division, Argonne National Laboratory

V. Mahadevan, R. Rahaman

Math and Computer Science Division, Argonne National Laboratory

J. Solberg

Methods Development Group, Lawrence Livermore National Laboratory

SHARP User Manual

SHARP User Manual

 i ANL-NE-16/6

ABSTRACT

SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It

is comprised of several components including physical modeling tools, tools to integrate the

physics codes for multi-physics analyses, and a set of tools to couple the codes within the

MOAB framework. Physics modules currently include the neutronics code PROTEUS, the

thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual

focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the

three individual physics modules are available with the SHARP distribution to help the user to

either carry out the primary multi-physics calculation with basic knowledge or perform

further advanced development with in-depth knowledge of these codes.

This manual provides step-by-step instructions on employing SHARP, including how to

download and install the code, how to build the drivers for a test case, how to perform a

calculation and how to visualize the results. Since SHARP has some specific library and

environment dependencies, it is highly recommended that the user read this manual prior to

installing SHARP. Verification tests cases are included to check proper installation of each

module. It is suggested that the new user should first follow the step-by-step instructions

provided for a test problem in this manual to understand the basic procedure of using SHARP

before using SHARP for his/her own analysis. Both reference output and scripts are provided

along with the test cases in order to verify correct installation and execution of the SHARP

package. At the end of this manual, detailed instructions are provided on how to create a new

test case so that user can perform novel multi-physics calculations with SHARP. Frequently

asked questions are listed at the end of this manual to help the user to troubleshoot issues.

SHARP User Manual

ANL-NE-16/6 ii

Table of Contents

Abstract .. i
Table of Contents .. ii
List of Figures .. iv
List of Tables.. iv
1 Introduction of SHARP ... 1

1.1 Introduction on SHARP Multi-physics Code System and Coupling Methodology 1

1.2 Neutronics Module: PROTEUS .. 4

1.3 Thermal Hydraulic Module: NEK5000 ... 5

1.4 Structural Mechanics Module: Diablo ... 5
2 SHARP Configuration and Installation ... 7

2.1 Access .. 7

2.2 Basic Installation Requirements .. 7

2.3 Module and Package Dependencies .. 7

2.4 Basic Configuration Options ... 8

2.5 Advanced Configuration Options .. 10

2.5.1 Enabling/disabling compile-time features or packages.. 10

2.5.2 Linking to existing libraries ... 10

2.5.3 Downloading third-party libraries .. 11
3 SHARP Drivers ... 12

3.1 Single Physics Driver .. 12

3.2 Single Physics Driver with Mesh Import .. 13

3.3 PROTEUS-Nek Coupled Physics Driver .. 13

3.4 PROTEUS-Nek Pseudo Steady State Coupled Physics Driver 14

3.5 PROTEUS-Nek-Diablo Coupled Physics Driver .. 14

3.6 Additional Coupled Physics Driver Options ... 14
4 SHARP Verification Tests .. 17

4.1 Single Physics Verification Tests: Nek5000 ... 17

4.2 Single Physics Verification Tests: PROTEUS .. 17

4.3 Single Physics Verification Tests: Diablo ... 18

4.4 Coupled Physics Verification Tests ... 19
5 Test Problem: Single Hexagonal Fuel Assembly (“sahex”) ... 20

5.1 Problem Description .. 20

5.2 Input Files .. 21

5.3 Running ... 25

5.3.1 Steady State Drivers ... 25

5.3.2 Pseudo-transient ... 27

5.3.3 Analyzing 28

5.3.4 Pseudo-transient ... 32
6 Create a New Test ... 36

6.1 Workflow to Configure/Compile a New Test ... 36

6.2 Input File Preparation for SHARP ... 37

6.2.1 Nek5000 Input Files for SHARP ... 37

6.2.2 PROTEUS Input Files for SHARP .. 39

SHARP User Manual

 iii ANL-NE-16/6

6.2.3 Diablo Input Files for SHARP ... 41
7 Frequently Asked Questions ... 45
8 Reference... 47

SHARP User Manual

ANL-NE-16/6 iv

LIST OF FIGURES

Figure 5.1 sahex problem geometry and mesh... 20

Figure 5.2 NEK5000 mesh and block number (sahex_nek.h5m). ... 23
Figure 5.3 Diablo and PROTEUS mesh Block number (sahex_proteus.h5m). 24
Figure 5.4 Power profile and temperature distribution for steady state solution 28
Figure 5.5 Load .hdf5 and .h5m file in VisIt ... 29
Figure 5.6 Power_Watts distribution. .. 30

Figure 5.7 Temperature distributions on different elevations. ... 31
Figure 5.8 VisIt work flow. .. 32
Figure 5.9 keff transient profile as a function of feedback and temporal resolution 34
Figure 5.10 Transient evolution of coupled field profiles at the beginning, during and at the

end of the perturbation a) power distribution (W) b) temperature (K) 34
Figure 6.1 Mesh section in rea file ... 38
Figure 5.2 SHARP/Diablo usage ... 42

Figure 5.3 Notional reactor model ... 43

LIST OF TABLES

Table 2.1. List of SHARP toolkit dependencies .. 7
Table 3.1. Command line options for SHARP. .. 15
Table 5.1 Geometry specifications for sahex. .. 21

Table 5.2 Coolant thermophysical properties and flow conditions for sahex. 21
Table 5.3 sahex Input Files. ... 22

Table 5.4 Mesh convergence study on keff ... 29

1 Introduction of SHARP

1.1 Introduction on SHARP Multi-physics Code System and Coupling Methodology

SHARP [1], developed under the NEAMS program, is an advanced modeling and simulation

toolkit for the analysis of nuclear reactors. SHARP is comprised of several components,

including physical modeling tools, tools to integrate the physics codes for multi-physics

analyses, and a set of tools to couple the codes within the MOAB [2] framework. Physics

modules currently include the PROTEUS [3] neutronics code, the Nek5000 [4] thermal-

hydraulics code, and the Diablo [5] structural mechanics code. The development philosophy

for the physics modules is to incorporate as much fundamental physics as possible, rather than

developing tools for specific reactor analysis applications. This empowers designers to analyze

transformative reactor concepts with simulation tools that are not limited to available

experimental data sets from currently existing reactor designs. By developing the tools to be

highly efficient on parallel computing platforms; employing millions of processor cores;

engineering-scale simulations become practical on high-performance computers currently

available at the DOE complex. Development efforts strive to work in tandem with efforts in

experimentation, so that the tools are validated to produce accurate results for modeling

physical phenomena that have been identified as important for nuclear reactor analysis. By

taking this approach, SHARP supports nuclear reactor analysis and design activities for DOE

programs and industrial partnerships with trustworthy modeling and simulation tools.

In order to produce a fully coupled physics simulation capability, two obvious approaches can

be pursued. In one approach, existing single-physics codes/components can be assembled into

an overall coupled simulation code with appropriate interfaces to communicate between the

components to capture the nonlinear feedback effects. This is generally referred to as a “small-

f” or “bottom-up” framework approach [1, 6]. The other approach is to use an integrated,

coupled-physics modeling framework, with new code pieces for each relevant physics area

developed inside that framework from scratch. This is sometimes referred to as a “large-F” or

“top-down” approach [7, 8]. The primary advantage of the former approach is that it preserves

several man-years invested in existing verified and validated individual physics modeling

codes, but at the cost of some intrusive modifications to enable the software interfaces. The

large-F approach avoids intrusive interfacing by providing a unified platform to enable

coupling, but at the cost of re-writing all the necessary physics codes and verifying the

components individually and as a whole. The overall approach being pursued in the NEAMS

SHARP User Manual

ANL-NE-16/6 2

Reactor Product Line (RPL) effort is to develop and demonstrate a small-f framework for

performing coupled multi-physics analysis of reactor core systems. This system takes

advantage of many single-physics codes also sponsored by the overall NEAMS program over

past several years.

In the SHARP framework, MOAB interfaces are implemented for 3 different physics

components that are relevant to fast reactor physics analysis. The addition of a new physics

component to the framework requires integration and ability to read the mesh and possibly

associated data from iMesh/MOAB formats, along with implementation to propagate solution

variables back onto the mesh after their computation via tags defined either on discrete vertices

or elements. Because of the various storage formats used in physics models, and the parallel

domain-decomposed environment in which these calculations are usually run, this integration

process can be somewhat involved.

A multi-physics reactor core modeling code can be constructed in many ways, and numerous

past efforts have provided stepping-stones for future efforts [8]. What distinguishes the

SHARP effort from others is the goal of flexibility in the physics, discretization types, and

software options supported by the framework. This section describes the SHARP modeling

approach in detail and illustrates how various existing physics codes have been connected to

this framework.

As stated above, SHARP employs a “bottom-up” approach, so it can use existing physics codes

and take advantage of existing infrastructure capabilities in the SIGMA framework, including

the MOAB mesh database, the Coupled Physics Environment (CouPE), which utilizes the

widely used, scalable PETSc library [Error! Reference source not found.]. Using an existing

physics code in this system (Figure 1.1) requires that the system support the mesh type used by

the individual physics models. The physics models can retain their own native representation

of the mesh, which gets transferred to and from MOAB’s representation through a mesh

adaptor; or it can use MOAB’s representation directly.

In practice, this means that the coupled system may be solved on multiple meshes, each of

which models part or the entire physical domain of the problem. To perform efficient coupled

calculations, the results must be transferred from the mesh on which they are generated (source

SHARP User Manual

3

mesh), to the mesh for which they provide initial or boundary conditions (target mesh) due to

nonlinearity introduced because of coupling between physics models.

(a)

(b)

Figure 1.1. (a) Depiction of the “bottom up” multi-physics coupling approach provided by SIGMA,
and (b) Sketch of the SHARP global iteration strategy.

SHARP User Manual

ANL-NE-16/6 4

1.2 Neutronics Module: PROTEUS

PROTEUS is a set of neutronics solvers developed at Argonne National Laboratory for solving

nuclear reactor applications, including discrete ordinates, method of characteristics, and nodal

methods. SHARP currently couples to the PROTEUS-SN code (also known as SN2ND), a

high-fidelity deterministic neutron transport solver based on the second-order even-parity

formulation of the transport equation [9]. For simplification of terminology, we refer to

PROTEUS-SN as PROTEUS in this document.

The application scope targeted for PROTEUS ranges from the homogenized assembly

approaches prevalent in current reactor analysis methodologies to explicit geometry

approaches, with the ability to perform coupled calculations to thermal-hydraulics and

structural mechanics. The PROTEUS solver has a proven capability of using existing petascale

parallel machines to solve problems with demonstrated scalability of over 70% (strong scaling)

at over 250,000 processors (on BlueGene/P). These achievements of PROTEUS were made

possible by partitioning the space-angle system of equations over the available processors and

utilizing established iterative solution techniques from the neutron transport community

combined with the parallel algorithms in the PETSc toolbox.

Interfaces to the SIGMA framework have been written to handle PROTEUS meshes that

describe detailed geometries with multiple blocks (collections of elements, each with uniform

material properties) with appropriate specification hooks for temperature-dependent material

cross-section evaluation and interpolation. This interface is essential to capture the nonlinear

feedback effect from thermal-hydraulics. Additionally, each region can be assigned a material

model which further allows PROTEUS to compute the density of various isotopes based on

temperature or other parameters. (Currently the only material model supported specified the

recomputation of sodium density based on temperature). When structural mechanical feedback

is present, causing mesh deformation, PROTEUS can use the new mesh as well as

automatically recalculate material density changes (thereby affecting cross-sections) to enable

direct coupling to a deformation code such as Diablo.

The eigenvalue solver in PROTEUS computes the neutron flux shape, computes the power

distribution in the reactor, and then places the computed data in appropriate SIGMA mesh tags.

SHARP User Manual

5

The power solution field is then propagated to the other physics solvers via the data-coupling

interfaces that support tight coupling with thermal-hydraulics, which uses the tag data as a

thermal source term to compute temperature fields. Several verification studies have been

performed during the quality assurance process to ensure that the coupled solver solutions are

physically meaningful. The PROTEUS-SN Methodology Manual and PROTEUS-SN User

Manual are available in the PROTEUS module documents directory as well as online.

PROTEUS-SN training material is available upon request.

1.3 Thermal Hydraulic Module: NEK5000

The Nek5000 computational fluid dynamics solvers are based on the spectral element method

developed by Patera [11]. Nek5000 supports two different formulations for spatial and

temporal discretization of the Navier-Stokes equations. The first is the PN-PN-2 method with

velocity/pressure spaces based on tensor-product polynomials of degree N and N-2

respectively. The second is the low-Mach number formulation of Tomboulides and Orszag

[12], which uses consistent order-N approximation spaces for both the velocity and pressure.

The low-Mach number formulation is also valid at the zero-Mach (incompressible) limit [13].

The Nek5000 code has been extensively verified and validated for several benchmark

problems and has a proven scalability in existing petascale architectures up to 131,072

processors (over a billion degrees-of-freedom). The NEK5000 User Manual and NEK5000

Training Material are available on line.

1.4 Structural Mechanics Module: Diablo

The Diablo code being developed at Lawrence Livermore National Laboratory uses implicit,

Lagrangian finite-element methods for the simulation of solid mechanics and multi-physics

events over moderate to long time frames [5]. A primary focus is nonlinear structural

mechanics and heat transfer. The code provides a venue for applying parallel computation to

discretization technologies developed and user-tested in the legacy serial-processor codes

NIKE3D and TOPAZ3D. Diablo is built around Fortran 95 data structure objects and a

message-passing programming model. The architecture provides flexibility for the addition of

other field problems, such as electromagnetics.

http://www.ipd.anl.gov/anlpubs/2014/08/79163.pdf
http://www.ipd.anl.gov/anlpubs/2016/02/125699.pdf
http://www.ipd.anl.gov/anlpubs/2016/02/125699.pdf
https://nek5000.mcs.anl.gov/documentation/
https://anl.box.com/s/vzta6yok6a7dotf5mr6phex6cvzz053n
https://anl.box.com/s/vzta6yok6a7dotf5mr6phex6cvzz053n

SHARP User Manual

ANL-NE-16/6 6

In structural analysis of mechanical assemblies, a key functionality is "contact": capturing the

interaction between unbonded material interfaces. The Diablo team has broad experience with

contact problems and has created state-of-the-art algorithms for their solution. Their experience

with contact motivates the use of low-order spatial discretizations, such as eight-node

hexahedra for continua and four-node quadrilaterals for shells. Appropriate formulations are

employed to accommodate nearly incompressible material models, such as for metal plasticity

and rubber elasticity. Global algorithms include second-order and quasi-steady time integration

and a number of approaches for nonlinear iteration: full Newton, modified-Newton, multiple

quasi-Newton updates, and line search. Linear solvers are utilized from multiple libraries. The

Diablo User Manual is available in the SHARP distribution package.

SHARP User Manual

7

2 SHARP Configuration and Installation

2.1 Access

The SHARP ToolKit is distributed within the U.S. under a government-use license. For access,

please contact sharp-dev@mcs.anl.gov. Users will receive a tarball of the latest SHARP release

package. The release package contains everything necessary to run a multi-physics reactor

problem with SHARP: the configuration scripts, physics module source code, SHARP drivers,

single physics and coupled physics verification problems.

2.2 Basic Installation Requirements

Before beginning to install SHARP, the user must have available recent versions of the Intel

compilers (recommend 13+ although older versions may work). If not using Diablo, the GNU

compilers (5.x) can alternatively be used. A recent version of the autotools toolchain (autoconf

v2.63 or higher; and automake v1.11 or higher) must also be installed on the system before

proceeding.

2.3 Module and Package Dependencies

At a minimum, the SHARP toolkit must be built with the Nek5000, PROTEUS, and the

SIGMA driver. Diablo is disabled by default and, if desired, may be enabled during

configuration (see “Advanced Configuration Options,” below). Required and optional third-

party packages are listed in Table 2.1. Required versions are noted.

Table 2.1. List of SHARP toolkit dependencies

Package
Diablo

disabled

Diablo

enabled
Version

BLACS X

BLAS/LAPACK X

EXODUS II X 6.06

HDF5 X X 1.8

HYPRE X 2.9

Metis X X 5.1

MILI X 13.1

MOAB X X 4.7

MPI X X 2

MUMPS X 4.10

NetCDF X 4.3

ParMetis X 4.0

mailto:sharp-dev@mcs.anl.gov

SHARP User Manual

ANL-NE-16/6 8

PETSc X X 3.1

SCALAPACK X

SILO X 4.9

2.4 Basic Configuration Options

SHARP’s configuration tools handle the entire configuration/compilation process, including all

third party libraries. The SHARP package can be installed out of the box with minimal

configuration options. If the user wishes to have SHARP install all required dependencies, the

“--download-essential” configuration option is used. If the user wishes to use a pre-installed

MPI library with compiler wrappers, the MPI_DIR=<path/to/mpi> flag should be passed,

otherwise, MPI will also be installed. Diablo is disabled by default and can be turned on with

the configuration option “--enable-diablo”.

The exact steps to a basic installation procedure are outlined below as an example.

Step 1:

Copy the tarball to your working directory and extract the files:

$cp SHARP.tar.gz /home/me/working/dir/
$cd /home/me/working/dir/
$tar –xzf SHARP.tar.gz
$cd SHARP

For developers, checkout the source from the SVN repo and change directories:

$cd /home/me/working/dir/
$svn co https://svn.mcs.anl.gov/repos/SHARP/trunk SHARP
$cd SHARP

For the purpose of clarifying this document, we will define an environmental variable

SHARP_DIR to represent this root-level of the SHARP distribution package. That is,

SHARP_DIR is the path that would be set if, hypothetically, you were to issue the following

command at this point:

$export SHARP_DIR=$PWD

Note, however, that it is not necessary for users to create this variable, and SHARP will not

look for it in the user’s environment. If the above commands were literal, then SHARP_DIR

would be set to /home/me/working/dir/SHARP.

SHARP User Manual

9

Step 2: To configure SHARP, the user first needs to run a top-level configuration generator

script, aptly named “bootstrap”. This script will verify whether the system contains the

necessary and supported version of autotools before proceeding further. After verification, the

autotools toolchain (aclocal, autoheader, autoconf, automake) can be used to generate the

configuration script. An example output from successfully running the bootstrap script is

shown below.

$./bootstrap

Bootstrap for SHARP build system.
Beginning to run bootstrap in /home/me/working/dir/SHARP.

Scanning dependencies...
Checking for autoconf........ [found version 2.69]
Checking for autoheader........ [found version 2.69]
Checking for aclocal........ [found version 1.14.1]
Checking for automake........ [found version 1.14.1]
Checking for libtoolize........ [found version 2.4.4]
Checking for autoreconf........ [found version 2.69]
--
Found all necessary dependencies. Proceeding with setup...
--
Running the autotools...
Running autoreconf..... [done]
--
Done bootstrapping your system. You may now run ./configure.
To see options use ./bootstrap --help or view the README file.
--

Step 3: Create a new “build” directory, configure and build SHARP with desired set of

features. For example, the user may quickly set up and running on ANL’s LCRC Blues Cluster

with the following commands:

On the ANL cluster Blues:
$cd $SHARP_DIR
$mkdir build
$cd build
$export MPI_DIR=/soft/mvapich2/2.0-intel-13.1
$../configure --enable-diablo --with-mpi=$MPI_DIR --download-
essential
$make all

SHARP User Manual

ANL-NE-16/6 10

On workstations in the ANL MCS Division:
$cd $SHARP_DIR
$mkdir build
$cd build
$../configure --enable-diablo --download-essential --with-
mpi=/soft/apps/packages/mpich2-1.4.1p1-intel –prefix=$SHARP_DIR
FFLAGS=-lifcore FCFLAGS=-lifcore
$make all

Step 4: (Optional): The open source code VisIt is necessary for results visualization. The user

should check with his/her local system administrator whether VisIt has already been installed.

If not, the user can install it by downloading the source code, and running the “build_visit”

script with the following command in any directory that user wants to install VisIt:

$ <script name> --itaps --netcdf --hdf5 --szip --console --silo --
python

The download and installation process for VisIt requires approximately 3 hours.

2.5 Advanced Configuration Options

Detailed instructions on configuration and installation can be found in the README file

distributed with SHARP. The vast majority of users will find it convenient to use SHARP’s

most basic configuration commands listed in the previous section to download all essential

dependencies. Otherwise, several families of configuration options are available to control

whether certain features are enabled/disabled, or if certain dependencies (pre-installed) need to

be used in the current build or if the user wants the package manager to auto‐download and

configure some of the dependencies.

2.5.1 Enabling/disabling compile-time features or packages

Compile-time features are enabled by options of the form:

--enable-<feature>[=yes|no]
--enable-<package>[=yes|no]

Values other than yes/no will return an error. -enable-<feature> is synonymous with -enable-

<feature>=yes and -disable-<feature> is synonymous with -enable-<feature>=no.

2.5.2 Linking to existing libraries

The user may to link pre-installed libraries with options of the form:

https://wci.llnl.gov/simulation/computer-codes/visit/source

SHARP User Manual

11

--with-<PACKAGE>=PATH

where the PATH points to the installation directory typically containing the library and its

headers. The PATH argument is mandatory and invalid paths return an error during

configuration checks. If a valid library or dependency has been found, then the configuration

for the dependency is processed to see if the required headers are available and if a test

program that utilizes the library calls can be successfully compiled and linked in order to

accumulate the overall LDFLAGS and LIBS to compile SHARP successfully.

2.5.3 Downloading third-party libraries

SHARP allows the user to download and compile third-party libraries through the configure

script. Third-party libraries may be downloaded and compiled with options of the form:

--download-<PACKAGE>[=yes|no|url]

Specifying -download-library[=yes] will download a tarball (.tar.gz file) of the library’s

source code from a default URL and utilize default, verified workflows to configure, build and

install the dependency onto a dependency installation directory. Running “configure –help”

provides a list of the default URLs associated with each library. Optionally, the user can also

specify -download-library=URL in order to download the library from the given URL and

build/install using the same process. Note that the user-provided URL should point to a valid

tarball and may not be guaranteed to be compatible with other SHARP libraries and modules.

SHARP User Manual

ANL-NE-16/6 12

3 SHARP Drivers

SHARP includes pre-defined drivers to execute both single- and multi-physics simulations

with the physics code modules. The advanced user can create their own drivers to solve a

multi-physics problem if one of the pre-existing drivers does not fit their purpose (this is

advanced usage and not covered in this user manual). The pre-defined drivers with this release

of SHARP are provided to run single physics problems with PROTEUS, Nek5000 or Diablo,

as well as coupled physics problems (PROTEUS-Nek, PROTEUS-Nek-Diablo). This chapter

describes the function and the general usage of these drivers.

3.1 Single Physics Driver

Driver name: single_physics

Description:

This driver is used to execute a single-physics problem (PROTEUS, Nek5000). SIGMA

performs only limited operations hands control over to the individual physics code. Proper

execution of this driver can be used to verify the calling of all the routines necessary for

solving a neutronics, CFD or structural mechanics problem. The driver is generic and thus an

argument specifying the physics type must be passed on the command line. This driver can be

used with a mesh from the corresponding physics code’s native mesh file, e.g. a .rea file for

Nek5000, or with a SIGMA formatted (MOAB, .h5m) mesh, because the physics code imports

the mesh itself. The results from simulations using this driver should match those from the

native executable of the corresponding physics code—e.g., the results of “single_physics -

physics_type nek” should match the output of Nek5000 for the same problem—providing one

simple means of verification of the operations being performed by the SIGMA interfaces.

Usage:

$./single_physics -physics_type proteus -session <problem name>
Run PROTEUS single physics case
$./single_physics -physics_type nek -session <problem name>
Run NEK5000 single physics case
$./single_physics -physics_type diablo -session <problem name>
Run Diablo single physics case

SHARP User Manual

13

3.2 Single Physics Driver with Mesh Import

Driver name: single_physics_with _mesh

Description:

This driver is used to execute a single-physics problem (PROTEUS, Nek5000 or Diablo). It is

similar to the “single_physics” driver, except that this driver imports the mesh from an input

file written in SIGMA’s format (MOAB, .h5m) rather than the native mesh format for the

corresponding physics code (e.g. .rea for Nek5000). Results from simulations using this driver

should match those from “single_physics” and the native executable of the corresponding

physics code.

Usage:

$./single_physics_with_mesh -physics_type <proteus or nek or diablo>
-session <problem name>

Or

$./single_physics_with_mesh -physics_type <proteus or nek or diablo>
<mesh filename>

3.3 PROTEUS-Nek Coupled Physics Driver

Driver name: proteusnek

Description:

This driver is used to execute a two physics PROTEUS-Nek5000 problem where iterations

between PROTEUS and Nek5000 are controlled by SIGMA. The two codes iterate back and

forth on a certain problem until a converged steady-state solution has been reached. The

SIGMA framework loads the mesh for both physics codes, maps the solution fields from each

physics code to the other mesh, and then transfers the necessary field data. PROTEUS transfers

power density information to Nek5000, and Nek5000 transfers temperature and density

information to PROTEUS. Currently, the density information is ignored in PROTEUS because

PROTEUS must recompute the densities based on its own representation of the materials in the

problem.

Usage:

$./proteusnek -session <problem name>

SHARP User Manual

ANL-NE-16/6 14

3.4 PROTEUS-Nek Pseudo Steady State Coupled Physics Driver

Driver name: proteusnek_pseudo_ss

Description:

This is a variation of PROTEUS-Nek5000 driver code. It solves the coupled physics problem

to obtain a steady state solution, performs a pre-defined perturbation to the physics, and then

recomputes the solution.

Usage:

$./proteusnek_pseudo_ss -session <problem name>

3.5 PROTEUS-Nek-Diablo Coupled Physics Driver

Driver name: proteusnekdiablo

Description:

This driver is used to execute coupled physics problem with all three physics (PROTEUS-

Nek5000-Diablo). The SIGMA framework loads the mesh for the three physics codes, maps

the solution fields from each physics code to the other mesh, and then transfers the necessary

field data. In this driver, Nek5000 and PROTEUS undergo an inner iteration, passing power

and temperature back and forth. Once converged, Nek5000 transmits temperature data to

Diablo, which computes mesh displacements and sends these back to PROTEUS and Nek5000.

The simulation continues until a desired time specified in the Nek5000 input.

Usage:

$./proteusnekdiablo -session <problem name>

3.6 Additional Coupled Physics Driver Options

Additional options are available via command line to control any of the coupled physics

simulations. These options are listed in Table 3.1.

SHARP User Manual

15

Table 3.1. Command line options for the CouPE Drivers for SHARP

Driver (CouPE) Option Option List (Default) Description

-coupe_type <string>: picard, nk (picard) Iteration type (one of) picard, nk.

The type of global iteration scheme,

which can be one of Picard iteration

or Newton-Krylov method. For

enabling the Newton-Krylov

method, the physics wrappers to

provide access to the fully

consistent, discrete residual vectors

and an approximation of the

linearized Jacobian operator.

-coupe_rtol <val> Real (1E-06) Relative tolerance. The relative

convergence tolerance for the

global coupled nonlinear iteration

scheme. This tolerance, along with

a constant absolute tolerance (1e-

10) controls the success in

convergence criteria.

-coupe_max_it <val>: Integer (50) Maximum iterations. The maximum

number of global coupled nonlinear

iterations to perform, at every time

step in the multiphysics simulation.

-coupe_ploc_tol <val>: Real (5E-06) Point location tolerance. The

minimum tolerance for locating a

point on the target mesh, that is

used internally when querying an

element and computing the inverse

mapping. The required accuracy

depends on the description and

resolution of the geometry and the

discrete mesh in each of the

physics.

-proteus_kinetics (none) PROTEUS kinetics flag. If present,

perform kinetics in neutronics

(requires additional input files). If

absent, assume steady state

(constant power). Note that at the

time of release (March 2016), this

SHARP User Manual

ANL-NE-16/6 16

option is in beta testing.

-physics_type <string> proteus, nek, diablo (no

default)

Physics type to be performed for

single physics drivers only. Specify

one of: proteus, nek, diablo.

SHARP User Manual

17

4 SHARP Verification Tests

The following verification test targets are provided to verify that the single and coupled

physics drivers are working correctly. The full set of verification tests can be performed by

issuing the following:

$cd $SHARP_DIR
$make verify

Alternatively, an individual verification test can be performed from the “tests” directory by

running make on the appropriate target:

$cd $SHARP_DIR/build/tests
$make <target-name>

Here, <target-name> is the name of the verification target selected from one of the descriptions

below. All of the <target-name> values begin with the string “verify”. Each verification test

compiles the necessary SHARP drivers, runs a simulation, and compares results to a reference

solution.

4.1 Single Physics Verification Tests: Nek5000

Target name: verify_nek_module

Description:

This target runs five single physics Nek5000 verification tests which include both 2D and 3D,

laminar and turbulent, with and without conjugate heat transfer problems for SHARP Nek5000

single physics verification. Successful execution of these tests indicates that the Nek5000

module is installed properly.

Usage:

$cd $SHARP_DIR/build/test
$make verify_nek_module

4.2 Single Physics Verification Tests: PROTEUS

Target name: verify_proteus_module, verify_proteus_kinetics_module

Description:

SHARP User Manual

ANL-NE-16/6 18

This target runs several single physics PROTEUS tests (both steady state and kinetics) for

SHARP PROTEUS single physics verification. Both serial and parallel tests are performed by

default. In order to perform all tests, the user should have available 12 processors. Successful

execution of these tests indicates that the PROTEUS module is installed properly.

Usage:

$cd $SHARP_DIR/build/test
$make verify_proteus_module
$make verify_proteus_kinetics_module

4.3 Single Physics Verification Tests: Diablo

Target name: verify_diablo_module

Description:

The single physics driver for Diablo is not included in this release of SHARP. However, the

capability will be released in the near future after a full test to ensure its maturity. Even so,

included in the modules/diablo/Tests directory is a small suite of verification problems to test

whether the standalone Diablo executable (configured by SHARP) compiles and runs

correctly. This test suite does not test all features of Diablo – future releases may include more

of the complete Diablo verification suite. The tests which will be covered by the “make verify”

command in the Diablo directory are:

o 001 – This is a simple beam bending test using hexahedral elements, with concentrated

forces applied to selected nodes at the end, and pressure boundary conditions applied to

additional sidesets. This problem is quasi-static (the primary mode in which Diablo is

used in the current release of SHARP). This test also ascertains whether MUMPS is

operating correctly. The problem runs in parallel via a 4-way decomposition. Finally,

mili plot output is tested.

o 001_include – This is a repeat of 001, but it tests whether the “include” capability

works with input files.

o 002 – This is a time-dependent version of 002, with some minor differences in problem

definition (sidesets versus nodesets for Dirichlet boundary conditions, etc.). It also tests

whether HYPRE is hooked up correctly.

SHARP User Manual

19

4.4 Coupled Physics Verification Tests

Target name: verify_single_physics_nek_sahex,

verify_single_physics_with_mesh_nek_sahex, verify_single_physics_proteus_sahex,

verify_single_physics_with_mesh_proteus_sahex, verify_proteusnek_sahex,

verify_proteusnek_pseudo_ss_sahex, verify_proteusnekdiablo_sahex, verify_sahex

Description:

These targets run tests for verification of all the drivers for the test case “sahex”, which is

described in the following section. There is a verification target for corresponding to each of

the single physics drivers and types, the PROTEUS-Nek drivers, and the PROTEUS-Nek-

Diablo drivers. For instance, “verify_single_physics_proteus_sahex” tests “single_physics -

physics_type proteus -session sahex”, and “verify_proteusnek_sahex” tests “proteusnek -

session sahex”. The last target, “verify_sahex”, is a special target that runs through all of the

coupled verification tests for the “sahex” problem, and is equivalent to running the make

command on all of the above targets. Successful execution of these tests indicates that the test

case “sahex” is compiled and run properly.

Usage:

$cd $SHARP_DIR/build/test
$make verify_single_physics_nek_sahex
verify the single-physics driver with Nek5000
$make verify_single_physics_with_mesh_nek_sahex
verify the single-physics driver with Nek5000 with mesh
$make verify_single_physics_proteus_sahex
verify the single-physics driver with PROTEUS
$make verify_single_physics_with_mesh_proteus_sahex
verify the single-physics driver with PROTEUS with mesh
$make verify_proteusnek_sahex
verify the coupled-physics driver with Nek5000 and PROTEUS
$make verify_proteusnek_pseudo_ss
verify the pseudo steady state coupled-physics driver with Nek5000,
PROTEUS.
$make verify_proteusnekdiablo
verify the coupled-physics driver with Nek5000, PROTEUS, and
Diablo.
$make verify_sahex
run the above-mentioned tests

SHARP User Manual

ANL-NE-16/6 20

5 Test Problem: Single Hexagonal Fuel Assembly (“sahex”)

The SHARP toolkit includes the full physics input for a test case called “sahex”. These

example inputs are used in the previous section to verify successful installation of SHARP.

They are also useful to understand how to use SHARP for multi-physics calculation. Here we

provide step-by-step instructions of how to run the SHARP drivers for the sahex problem.

Included are instructions for setup, initialization and visualization of the solution. Reference

outputs are also provided such that the user can run the various executables drivers described in

the previous section and determine whether the same output is obtained.

5.1 Problem Description

This model consists of a single hexagonal assembly containing six fuel pins with cladding,

one central “control” rod with a larger diameter than the fuel pin, sodium coolant and an outer

duct wall that encloses all the other components. The geometry of the problem is shown in

Figure 5.1. The detailed geometry information and flow condition are listed in Table 5.1 and

Table 5.2 respectively. The specific parameter listed in Table 5.1 is indicated in Figure 5.1.

Figure 5.1 sahex problem geometry and mesh.

SHARP User Manual

21

Table 5.1 Geometry specifications for sahex.

Parameter Unit (mm) Parameter Unit (mm)

Rc 14 Li 46.188

Rs 8 Lo 57.735

Ra 10 H 250

h 2

Table 5.2 Coolant thermophysical properties and flow conditions for sahex.

Parameter Value Remark

ρ 0.85 850 kg/m
3

 p1 in sahex_nek.rea file

µ 0.26 2.6e-4 Pa·s p2 in sahex_nek.rea file

ρCp 1.08110 Cp=1271.5 J/kg·K P7 in sahex_nek.rea file

k 0.7 700K (W/cm·K) P8 in sahex_nek.rea file

Re 11700 -

Δt 1e-3 s

Vin 65.3896 cm/s

5.2 Input Files

The input files for the sahex problem are listed in Table 5.3. These files include input files for

different modules and other control files. The isotopic cross section and delayed neutron input

data for the neutronics solver were generated using the MC
2
-3 code to obtain parameterized 4-

and 9-group cross sections as a function of temperature and density. In the neutronics model,

vacuum boundary (non-reentrant) conditions are applied on the top and the bottom surfaces

and reflective boundary condition are applied to the sides. In the CFD model, the oulet

boundary conditions are applied to the top surface of the fluid domain and adiabatic wall

boundaries are applied to the solids. The sides are adiabatic walls.

SHARP User Manual

ANL-NE-16/6 22

Table 5.3 sahex Input Files.

PROTEUS

File Name Description

sahex_proteus.inp Driver input file, a plain text (ASCII) file, which drives the

PROTEUS calculation by specifying solver tolerances, the

angular discretization, parallelization options, and other input

options. Additionally, the UNIX file paths to the other input

files (cross sections, mesh, and material assignment file) are

specified here

sahex_proteus.h5m h5m format mesh file where the block number and sideset

number are specified

sahex_proteus_4g.ISOTXS

sahex_proteus_9g.ISOTXS

The cross section file that consists of the multigroup cross

sections for all isotopes and/or compositions in the problem.

The ISOTXS format is the preferred file format for cross

section data used by PROTEUS-SN. The MC
2
-3 code

(Argonne National Laboratory) can be used to process

multigroup cross sections in this format. Additionally, the

DRAGON code (Ecole Polytechnique de Montreal) [14] has a

capability to generate ISOTXS file.

sahex_proteus.anlxs The cross section file with anlxs file format is a simple ASCII

interpretation of the data provided in ISOTXS. Any anlxs file

format that is provided is converted into the appropriate

ISOTXS file at runtime.

sahex_proteus.assignment Material assignment file which performs three main functions:

(1) define materials or mixtures based on the isotopes in the

cross section file, (2) assign these materials to blocks in the

mesh, and (3) assign properties (e.g. density, temperature, and

material models) to blocks in the mesh.

NEK5000

sahex_nek.rea Input file consists of several sections:

o Parameters such as viscosity, conductivity, number of

steps, time step size, order of the time stepping,

frequency of output, iteration tolerances, flow rate,

filter strength, etc.

o passive scalar and logical switches

o Mesh and boundary condition information

o Output info like restart conditions

sahex_nek.h5m h5m format mesh file which can only work under MOAB

framework

sahex_nek.usr The user file where users may specify spatially varying

properties (e.g., viscosity), volumetric heating sources, body

forces, and so forth. One can also specify arbitrary initial and

boundary conditions through the routines useric() and

userbc(). The routine userchk() allows the user to interrogate

the solution at the end of each time step for diagnostic

purposes.

SHARP User Manual

23

SIZE The SIZE file that defines the problem size, i.e. spatial points

at which the solution is to be evaluated within each element,

number of elements per processor etc. The SIZE file governs

the memory allocation for most of the arrays in Nek5000, with

the exception of those required by the C utilities.

Diablo

sahex_Diablo.assembly Input file consists of solver information and material data

sahex_Diablo.subassembly Input file consists of block ids and boundary conditions

sahex_Diablo.exo The EXODUS format mesh file and writes the equivalent

MOAB (“.h5m”) file as part of the initialization process

sahex_Diablo.h5m h5m format mesh file created by Diablo when it initializes

OTHER

README Simple description of the sahex problem

Makefile.am Make file with Driver information

sahex_nek.jou mesh script for RGG program in MeshKit

Figure 5.2 NEK5000 mesh and block numbering (sahex_nek.h5m).

SHARP User Manual

ANL-NE-16/6 24

Figure 5.3 Diablo and PROTEUS mesh and block numbering (sahex_proteus.h5m).

The mesh and block number for Nek5000 and PROTEUS are shown in Figure 5.2 and Figure

5.3. For Nek5000, there are 5 blocks for fuel pins; cladding; sodium coolant; control rod and

duct wall. For PROTEUS and Diablo, there are 25 blocks which are divided by 5 parts in

stream wise direction for different axial height materials. In term of the mesh resolution, the

SHARP User Manual

25

hydraulics solver uses a comparatively coarser mesh than neutronics, consistent with the use of

quadratic elements and nature of spectral discretization.

5.3 Running

5.3.1 Steady State Drivers

Step1: Prepare input files

Make sure all the input files are available in the working directory:

$SHARP_DIR/build/tests/sahex

Step2: Build drivers

From the working directory, build all the drivers with the following command:

$cd $SHARP_DIR/tests/sahex
$make all

Diablo related drivers are created if the --enable-diablo option was used to configure SHARP.

Alternatively, the user can build each driver separately with the following command:

$make single_physics_sahex
build single physics driver
$make single_physics_with_mesh_sahex
#build single physics driver to read a mesh file and create an
iMeshInstance
$make proteusnek_sahex
build PROTEUS-NEK coupled physics driver
$make proteusnek_pseudo_ss_sahex
build PROTEUS-NEK pseudo-transient coupled physics driver
$make proteusnekdiablo_sahex
build PROTEUS-NEK-Diablo coupled physics driver

The above command lines create executable files single_physics_sahex,

single_physics_with_mesh_sahex, proteusnek_sahex, proteusnek_pseudo_ss_sahex

proteusnek_sahex and proteusnekdiablo_sahex.

Step3: Run the case

Serial:

./single_physics_sahex -physics_type proteus -session sahex
Run PROTEUS single physics

SHARP User Manual

ANL-NE-16/6 26

./ single_physics_sahex -physics_type nek -session sahex
Run NEK5000 single physics
./single_physics_sahex -physics_type proteus sahex_proteus.h5m
Run PROTEUS single physics with iMeshInstance option
./ single_physics_sahex -physics_type nek sahex_nek.h5m
Run NEK5000 single physics iMeshInstance option
./proteusnek_sahex -session sahex
Run PROTEUS-Nek5000 pseudo-transient coupled calculation

If desired, the user can try out command line option to control aspects of the calculation such

as maximum integrations and minimum tolerance (see Table 3.1). To run the calculations in

parallel with N processors, simply append “mpiexec –n <N>” to the above commands, or the

equivalent command for the user’s system.

An example script for running the proteusnek_sahex driver on systems that use PBS for job

scheduling follows. Save the contents to a file named sahex.pbs.

#!/bin/bash
#PBS -N sahex
#PBS -j oe
#PBS -V
#PBS -S /bin/bash
#PBS -m bae
cd $PBS_O_WORKDIR
NHOSTS=`cat ${PBS_NODEFILE} | wc -l`
make proteusnek_sahex
mpiexec –n $NHOSTS ./proteusnek_sahex -session sahex

This PBS script is rather generic. It assumes that the “qsub” command is issued from the sahex

directory. Also, the computing resources are not specified, and so the user must do so on the

command line. Specifying the computing resources is platform-specific, as you need to know

the number of processes to use on each node. For instance, on the ANL cluster Blues, there are

16 cores per node. For this machine, you could submit the job to run on 64 processes using the

following commands:

$cd $SHARP_DIR/build/tests/sahex/
$qsub –lnodes=4:ppn=16 sahex.pbs

Step 4: Check the output files

SHARP User Manual

27

Generally in addition to the text output, the following output files are created after calculation:

PROTEUS: sahex_4g_L1T2.hdf5.xx

NEK5000: sahex_nek.fldxx

MOAB: sahex0001~ sahex0xxx.h5m

Where hdf5 files include the neutronic information and fld files include the thermal hydraulic

information while h5m file include both.

5.3.2 Pseudo-transient

The type of transient examined in the paper is a simplified loss-of-heat-sink, where the

temperature of the fluid at the inlet boundary is specified as a function of time and the

evolution in the coupled fields is computed. This simulates an accident scenario when the heat

exchangers fail to remove excess heat from the coolant, thereby increasing the inlet

temperatures steadily, causing feedback effects from different sources to interact nonlinearly

between the physics.

𝑇(𝑡) = {
𝑇0, 𝑡 ≤ 𝑡0

𝑇0 + 𝛼𝑇0𝑡𝑎ℎℎ (
𝑡 − 𝑡0

∆𝑡
) 𝑡 ≥ 𝑡0

where T0 is the transient initiation time, T0 is the initial converged temperature solution, Δt is

the duration of the transient at the inlet and α is the damping parameter to control the

magnitude of the perturbation (typically 0.2). User can run the case with the following

command:

./proteusnek_pseudo_ss_sahex -session sahex # Run PROTEUS-Nek5000
pseudo transient coupled calculation

SHARP User Manual

ANL-NE-16/6 28

5.3.3 Analyzing

5.3.3.1 Steady State

Figure 5.4 Power profile and temperature distribution for steady state solution

The profile of the integral power based on the angular flux computed from solving the

Boltzmann neutron transport equation and the temperature profile from thermal-hydraulic

solver as shown in Figure 5.4 . The decoupled profiles are physically meaningful and provide a

good initial of the power distribution shifts towards the inlet of the core due to lower material

density at the top of the assembly, while the peak temperatures are observable near the outlet

since the coolant temperature is monotonically increasing.

Visnek sahex_nek

to crease sahex_nek.5000 file which can be loaded into VisIt to visualize the results or use

vis.nek3d script

Script of vis.nek3d:

NEK5000
version: 1.0
filetemplate: sahex_nek.fld%02d
firsttimestep: 1
numtimesteps: #
Remember to edit numtimesteps: # (the last time step)

For PROTEUS, choose UNIC for open file as type as shown in Figure 5.5 to load .hdf5xx file.

Alternatively, we can load h5m file to visualize the result by using ITAPS_MOAB type.

SHARP User Manual

29

Figure 5.5 Load .hdf5 and .h5m file in VisIt

The power distribution generated by adding a pseudocolor plot of the Power variable from

sahex_4g_L1T2.hdf5.xx is shown in Figure 5.6 and the temperature distribution on different

elevations from sahex_nek.fldxx is shown in Figure 5.7. Some work flow in VisIt is shown in

Figure 5.8. Several successive refinements of the neutronics and hydraulics meshes are

performed. The convergence result of keff based on a reference mesh solution is listed in Table

5.4. User can find the refined mesh in ./refinement directory. Users should be able to perform

more elaborated mesh convergence study by generating their own meshes without doubt.

Table 5.4 Mesh convergence study on keff

Element # Element size time keff Error(%)

7590 0.7144 44.64 0.67387473 0.42

54740 0.3573 63.39 0.67671801 0.114

437920 0.1791 84.27 0.67751902 0.0315

3503380 0.0895 162.93 0.67775429 reference

It is also imperative to note that the parallel performance of the solvers (on 32 processors)

measured using the computational cost per Picard iteration increases nearly linearly with the

number of degrees-of-freedom.

SHARP User Manual

ANL-NE-16/6 30

Figure 5.6 Power_Watts distribution.

1/4 Span 1/2 Span

SHARP User Manual

31

3/4 Span 1 Span

Figure 5.7 Temperature distributions on different elevations.

Visualize mesh Create contour for variables

SHARP User Manual

ANL-NE-16/6 32

Create slice for contour of variables
Adjust slice location

Draw the plot
Select blocks to be visible

Figure 5.8 VisIt work flow.

5.3.4 Pseudo-transient

Once the Initial Conditions are converged, the loss-of-heat-sink simulation is initiated at t=t0,

by updating the inlet boundary conditions to increase inlet boundary temperature from 600 to

720K during the transient. The total power in the assembly is specified as user input and power

distributions are normalized accordingly.

SHARP User Manual

33

#include "../src/physics/impls/proteus/proteusimpl.h"
PetscErrorCode PerformPerturbation_PROTEUS(Physics proteus)
{
 PetscReal perturbation_factor = 2.0;
 // scale the total power by 2.0; should see
 // increase in temperature and decrease in density
 SN2ND_ScaleTotalPower(&perturbation_factor);
 PetscFunctionReturn(0);
}

#include "../src/physics/impls/nek/nekimpl.h"
PetscErrorCode PerformPerturbation_NEK(Physics nek)
{
 PetscReal perturbation_factor = 1.2;
 // scale the input boundary condition power by 1.2; should see
 // increase in temperature and decrease in density
 NEK_Perturb_BCVars(&perturbation_factor);
 PetscFunctionReturn(0);
}

In all the cases, the number of sub-cycling steps performed in thermal-hydraulics was specified

to resolve the transient change in temperature. Several transients have been performed to test

for sensitivity of the coupled field solutions to different feedback effects. Figure 5.9 shows the

change in keff as a function of normalized time for different types of coupled feedback effects

optionally turned on. As the frequency of coupling is increased, the accuracy of the coupled

physics solution improves since the computed criticality converges towards the reference. The

flow time of the sodium through the assembly is 0.9 s (characteristic time scale), and the

overall time-steps are reduced consistently to resolve this spatial and temporal scales in

successive simulations starting with Δtcoarse=0.02s. Note that feedback based on both

temperature and density are necessary to show the complex nonlinear coupling between the

neutronics and thermal-hydraulics physics for this test problem since the case where only

Doppler feedback is considered shows larger sensitivity to the inlet temperature change. In

other words, the density and Doppler expansion feedback are competing effects as validated

from theory and experimental observations. The total power decrease in the assembly as the

transient progresses can be observed in Figure 5.10a. The corresponding evolution of the

temperature profiles is shown in Figure 5.10b. Note that the significant change in power profile

SHARP User Manual

ANL-NE-16/6 34

corresponding to only a minor penetration of the high temperature front within the domain

indicates a very fast response (high sensitivity) to the boundary condition in the system.

Figure 5.9 keff transient profile as a function of feedback and temporal resolution

Figure 5.10 Transient evolution of coupled field profiles at the beginning, during and at

the end of the perturbation a) power distribution (W) b) temperature (K)

SHARP User Manual

35

The coupled physics simulation capability with SHARP framework was tested on the sahex

problem for a loss-of-heat-sink transient and the results obtained have been verified by spatial

and temporal solution convergence studies. The sensitivity tests lead to important conclusions

on:

i) The time-step size necessary for this transient to maintain accuracy.

ii) The importance of the inclusion of all types of feedback effects.

SHARP User Manual

ANL-NE-16/6 36

6 Create a New Test

Once the user is familiar with running the “sahex” example problem, they can proceed with

creating their own test case. This section describes how to create a new test case both from a

configuration/installation standpoint and also from an input file standpoint. The user should

first duplicate the contents of the sahex directory in a new directory called “mytest” (or some

other new name). Then, the input files in the new directory should renamed “mytest” (in our

example) instead of “sahex” and filled in with the content required to model “mytest”.

Certainly, users can used their own input files to create their own case by following this

procedure.

6.1 Workflow to Configure/Compile a New Test

Step 1: Copy the sahex example into a new directory in tests/ and rename the input files to

follow the expected convention. SHARP requires that input files follow a particular naming

convention in order to automatically link the driver to the appropriate input files.

$cd ~/SHARP/tests
$cp -r sahex mytest

Change name of all the input files from sahex to mytest. For instance, sahex.rea becomes

mytest_nek.rea; sahex_proteus.inp to mytest_proteus.inp. Remember to change content in

mytest_proteus.inp and kinetics.inp. For example,

SOURCEFILE_MESH mytest_proteus.h5m
SOURCEFILE_XS mytest_proteus_4g.ISOTXS
SOURCEFILE_MATERIAL mytest_proteus.assignment
EXPORT_FILE mytest_4g_L1T2.hdf5

Step 2: Modify the makefile.am and configure.ac files to include information about the new

problem “mytest”. Modify $SHARP_DIR/tests/Makefile.am by including mytest in new

SUBDIRS:

SUBDIRS = dbgprb sahex sahex_core xx09 xx09_core mytest

Modify /tests/mytest/Makefile.am by changing the PROBLEM variable and driver name:

PROBLEM = mytest

Drivers
single_physics_mytest_SOURCES = ../drivers/single_physics.cxx
single_physics_with_mesh_mytest_SOURCES = ../drivers/single_physics_with_mesh.cxx

SHARP User Manual

37

if SHARP_ENABLE_PROTEUS
proteusnek_mytest_SOURCES = ../drivers/proteusnek.cxx
proteusnek_pseudo_ss_mytest_SOURCES = ../drivers/proteusnek_pseudo_ss.cxx

if SHARP_ENABLE_Diablo
DRIVERS += proteusnekdiablo_mytest
proteusnekdiablo_mytest_SOURCES = ../drivers/proteusnekdiablo.cxx
endif

Modify $SHARP_DIR/configure.ac to add the new test directory:

Create test directories

SHARP_PREP_TESTDIR([mytest])

Step 3: Rebuild SHARP

$ cd $SHARP_DIR
$./bootstrap
$ cd build
$ make

Make the drivers.

$ cd $SHARP_DIR/build/tests/mytest
$ make all #create all drivers
$ make single_physics_mytest # create specific driver

After this procedure, the user has created a new template problem which can be successfully

configured with SHARP. The individual physics code input files can now be updated with the

appropriate input content.

6.2 Input File Preparation for SHARP

6.2.1 Nek5000 Input Files for SHARP

In order to employ Nek5000 module, the user must define the simulation by preparing

geometry and parameters file (.rea) case set-up file (.usr), problem size file (SIZE) and mesh

file (.h5m). Since SHARP has some special requirements on these files, it is recommended that

the user should copy the pre-existing SAHEX files (except mesh file) from the sahex directory

as a template. The user can customize these files in accordance with their specific problem.

The Nek5000 user manual link provided in chapter 1 contains detailed instructions on

modifying these files. The user needs to create the mesh and convert it to .h5m format file with

mbconvert installed in MOAB library with the following command:

SHARP User Manual

ANL-NE-16/6 38

mbconvert <target mesh file(.exo or .h5m)> <output mesh file(.h5m)>

 It’s worth noting that Nek5000 only accept Hex27 elements. The user needs to convert

conventional Hex8 elements to Hex27 elements with Cubit or other three party tools before

using mbconvert. In the same directory, user can use mbpart to partition the mesh:

mbconvert <processor number> <original mesh file(.h5m)> <output mesh
file(.h5m)>

After generating the mesh file, user need to define the mesh information such as block ID,

material number and boundary conditions in mesh section of .rea file. The setup in rea file for a

simple example of conjugate heat transfer is shown in Figure 6.1. The content of the following

parts need to be filled with caution, otherwise, Nek5000 shall fail to read the mesh.

Part1: File name of h5m file.

Part2: Number of fluid regions and number of solid regions.

Part3: Fluid blocks ids and solid block ids.

Part4: Material number, the sequence of this number should be in line with the sequence of the

blocks ids in part 3.

Part5: Number of boundaries.

Part6: Definition of boundary conditions. First column: sidesets number. Second column:

region ID, 1for fluid and 2 for solid. Third column: boundary conditions.

Figure 6.1 Mesh section in rea file

SHARP User Manual

39

6.2.2 PROTEUS Input Files for SHARP

PROTEUS defines the simulation by driver input file (.inp), cross section file (.ISOTXS),

material assignment file (.assignment) and mesh file (.h5m). When performing multi-physics

neutronics problems with the PROTEUS module, some additional input options are required

and/or optional which do not apply in standalone mode.

o Required: Mesh in h5m format

PROTEUS requires the mesh for a coupled problem to be in h5m format. Only exterior

sidesets can exist in the mesh. Any interior sidesets must be removed for PROTEUS. Note that

PROTEUS assigns unique materials on a block-wise basis – therefore temperature feedback

received from Nek5000 is averaged over the entire block on element volume-weighted basis. If

a finer distribution of temperatures is required for feedback, the user must refine the block size

in the mesh. PROTEUS communicates powers on an element-wise basis.

o Required: Cross Section Data at Two Temperatures

PROTEUS requires cross sections at two temperatures in order to perform temperature

feedback (interpolate cross sections at specific temperatures during the simulation). The

ISOTXS (cross section file) must contain two sets of data for each isotope, one at a lower

temperature, and one at a higher temperature. Since a particular isotope name can only be

associated with data at one temperature, the following naming convention must be used. The

isotopes with lower temperature data must have names fewer than or equal to 6 characters. The

isotopes with higher temperature data are named identically to the lower temperature data

name, with underscores and a capital T appended to the name in order to make the name 8

characters.

Example: U238 (lower temperature data for U-238) and U238_T (higher temperature data for

U-238)

o Required: Material Assignment File Properties

For coupled problems, the density of each region (block) must be given as Density(g/cc). The

concentration of each isotope in the mixture must be given in atom % rather than weight %.

SHARP User Manual

ANL-NE-16/6 40

Initial temperatures per block must be given, consistent with Nek5000, using the keyword

TEMPERATURE(K). Material models are optional.

o Required: Specification of Kinetics Solve via Command Line

To perform a kinetics solve rather than a steady state solve, the kinetics input file must be

named kinetics.inp and the option “-proteus_kinetics” must be passed to the driver.

o Required: Specification of Timesteps in Kinetics Input

To perform kinetics solve in a multi-physics coupled problem, only one timestep should be

specified in the PROTEUS kinetics input. The assignment file at this timestep must be identical

to the initial condition assignment file. The time at the end of the timestep will be overridden

by the Nek5000 timestep size. The intervals per timestep will be used to define spacing, but if

the USE_RADAU option is turned on, the intervals per timestep should not matter.

o Optional: Density Computation as a Function of Temperature

The SN2ND_Computes_Density keyword in the PROTEUS control input file may optionally

be defined as YES to allow PROTEUS to update isotopic densities based on material

temperature models. If this option is defined as YES, then the MATERIALMODEL property

must be assigned to all regions in the material assignment file. Currently, only

MATERIALMODEL 0 and MATERIALMODEL 1 are supported. MATERIALMODEL 0

indicates that no density should be recomputed for this block based on temperature.

MATERIALMODEL 1 indicates that density should be recomputed for any sodium isotopes in

the block based on temperature. If the SN2ND_Computes_Density keyword is undefined or

NO, PROTEUS will not update any material densities based on temperature. To be clear, this

keyword option only affects recalculation of density based on temperature (not mesh

movement).

o Automatic Density Computation as a Function of Mesh Deformation

The user should understand that if mesh deformation occurs during the simulation, PROTEUS

will automatically re-compute the densities of each isotope to conserve mass. The

SN2ND_Computes_Density and MATERIALMODEL properties will supersede this density

calculation if provided. For example, sodium densities will be computed according to

temperature, whereas fuel densities will be calculated according to mesh deformation.

SHARP User Manual

41

6.2.3 Diablo Input Files for SHARP

Diablo is a Multiphysics implicit finite element code with an emphasis on coupled

structural/thermal analysis. In the SHARP framework, it is used as the structural solver, and

may also be used as the mesh smoother.

In the current SHARP implementation, Diablo receives temperatures from Nek5000, which are

calculated in a coupled fashion with the PROTEUS neutronics code. The change in

temperatures induces thermal stresses in the structural model. Diablo then performs one or

more Newton (or Quasi-Newton) iterations until the structural solve is converged (meaning the

structure is once more in equilibrium), and then returns the deformed configuration to the rest

of SHARP.

Diablo may also be used as the mesh smoother for SHARP (currently this is the only method

tested). Diablo accomplishes this task by solving a solid mechanics problem for a domain that

includes the entire domain, including the fluid domain. The two tools by which this is

accomplished are “pseudo-materials” and “duplication”.

Pseudo-materials are simply choices of material parameters for regions which are not

structural, e.g. the fluid regions and other regions for which a structural calculation is not

desired. Typically one would choose an elastic material (e.g. material model 1, 15, or 27) with

small values of elastic constants, e.g. 1/100
th

 or 1/1000
th

 of the typical values of the structural

materials. The smaller the value the more accurate the structural solution, but the more

difficult the conditioning of the resulting linear system is, which may result in a less efficient

solution. Choosing a direct linear solver such as WSMP or MUMPS is generally preferable

because they are less sensitive to the condition number of the matrix. Typically it is

advantageous to provide pseudo-materials with a realistic value of the coefficient of thermal

expansion.

Duplication allows an element set to be “duplicated”, including all the associated nodes and

elements. This allows the mesh smoother to operate independently, in some sense, from the

solid mechanics solution.

An example of duplication is the provided by the following diagram:

SHARP User Manual

ANL-NE-16/6 42

Figure 6.2 SHARP/Diablo usage

In the figure, element sets #1 and #2 represent structural material that is shared between the

rest of SHARP (e.g. PROTEUS and NEK) and Diablo. Element Set #3 represents fluid

material that is modeled as pseudo-material in Diablo. Element sets #5 and #6 represent

material that is structural, but represented as fluid in Nek and PROTEUS (e.g. pads). In order

to represent the structural response, the element sets are duplicated as element sets #6 and #7.

A contact set between the two element sets is defined on the duplicated nodes. The green node

set (or, equivalently, sideset) represents nodes that are shared by both the duplicated and the

unduplicated elements (in order that the duplicated elements may be coupled structurally to the

rest of the mesh). By means of selective use of duplicated element sets, and duplicated and

excluded element sets, the structural response of a reactor may be modeled, as per Figure 2.

SHARP User Manual

43

Figure 6.3 Notional reactor model

All valid Diablo syntax is valid within the SHARP framework, with the exception that time

stepping (e.g. choice of time step) is controlled via SHARP, and all temperature information is

also provided by SHARP.

Duplication and the associated other features are provided only within the context of the

exodus reader. The Diablo manual consistent with the current release of SHARP is in the

modules/Diablo/documents directory.

To create a duplicate element set, use the following command or variations thereof in the

subassembly file within an element set definition.

#start_element_topo_exodus
#exodus_block_id 5
#duplicate_nodes_flag .TRUE.
#exclude_duplicates_sideset 5
#exclude_duplicates_nodeset 6

SHARP User Manual

ANL-NE-16/6 44

#end_element_topo_exodus

In a Neumann, Dirichlet, or Contact Set definition, the duplicated nodes can be selected

(instead of the original nodes) via the #map_nodes_flag.

#start_bc_topo_exodus
#exodus_sideset_id 5
#map_nodes_flag .TRUE.
#end_bc_topo_exodus

SHARP User Manual

45

7 Frequently Asked Questions

This chapter describes the frequently asked questions when using SHARP.

1. How do I fix the error “checking whether the C compiler works... no” when configuring

SHARP?

Answer: This error could appear in various conditions. It is most often caused by not

using the proper version of MPI or pointing to the wrong MPI directory. Users can

check chapter 2 to find the proper version of MPI and use the following command to

specify the MPI directory:

 export MPI_DIR=<MPI directory>

2. How do I fix the error that says “additional relocation overflows omitted from the

output” when compiling the drivers?

Answer: This error is usually caused by the setup which doesn't meet the per-processor

memory requirements for Nek5000. This problem can be fixed by reducing “lelt” in the

Nek5000 SIZE file.

3. How do I fix the error that says “Missing temperature or mass density in ImportTandD

Missing temperature or mass density” when running the calculation?

Answer: The error shows when temperature of regions is not specified in PROTEUS

material assignment file (for instance sahex_proteus.assignment) with the following

format:

 REGION_PROPERTY REGION_000000002 TEMPERATURE(K) 800

4. How do I fix the error “Density/Temperature varies by more than 15% between the last

iteration and the current one” when running the calculation?

Answer: This error indicates that the initial conditions of density or temperature for

PROTEUS and Nek5000 are not consistent and the difference is more than 15%. In the

current version of SHARP, the error can only be fixed by checking the consistency of

the initial conditions for the two modules.

5. When running the calculation, how to fix the error that says :

SHARP User Manual

ANL-NE-16/6 46

 read .rea file
 ABORT: nelv is invalid in nekmoab_proc_map
 nelv, lelv = 0 6496
 call exitt: dying ...

Answer: This error is due to an input set up mistake in rea file for Nek5000. User

should be able to fix that issue by checking if the block ID in the mesh is consistent

with the number specified in rea file. The detailed setting is discussed in chapter 5.1.

User ought to be able to get the information of the mesh of h5m format by using the

following command gives

 mbsize –m <mesh file name>

Generally speaking, mbsize locates at /build/libraries/moab/moab-4.9.0/build/tools

SHARP User Manual

47

8 Reference

1. A. Siegel, T. Tautges, A. Caceres, D. Kaushik, P. Fischer, G. Palmiotti, M.A. Smith, J.

Ragusa, “Software Design of SHARP,” in Proceedings of the Joint International Topical

Meeting on Mathematics and Computations and Supercomputing in Nuclear Applications

(M&C + SNA), American Nuclear Society, April 2007.

2. T.J. Tautges, R. Meyers, K. Merkley, C. Stimpson, C. Ernst, MOAB: A Mesh-Oriented

Database, Sandia National Laboratories report SAND2004-1592, April 2004.

3. M.A. Smith, D. Kaushik, A. Wollaber, W.S. Yang, B. Smith, C. Rabiti, G. Palmiotti,

“Recent Research Progress on PROTEUS at Argonne National Laboratory,” in

Proceedings of the International Conference on Mathematics, Computational Methods and

Reactor Physics (M&C), American Nuclear Society, April 2009.

4. P.F. Fischer, J.W. Lottes, S.G. Kerkemier, Nek5000 Web Page,

http://nek5000.mcs.anl.gov, 2008.

5. D. Parsons, J.M. Solberg, R.M. Ferencz, M.A. Havstad, N.E. Hodge, and A.P. Wemhoff,

Diablo User Manual, Lawrence Livermore National Laboratory report UCRL-SM-234927,

Sept. 2007.

6. T.J. Tautges, H.-J. Kim, A. Caceres, R. Jain, “Coupled Multi-Physics simulation

frameworks for reactor simulation: A Bottom-Up approach,” in Proceedings of the

International Conference on Mathematics and Computational Methods Applied to Nuclear

Science and Engineering (M&C), American Nuclear Society, Rio de Janeiro, Brazil, May

2011.

7. D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandi, “MOOSE: a parallel computational

framework for coupled systems of nonlinear equations,” Nuclear Engineering and Design,

239(10):1768–1778, Oct. 2009.

8. D.E. Keyes et al., ”Multiphysics Simulations: Challenges and Opportunities,” International

Journal of High Performance Computing Applications, 27(1):4-83, 2012.

9. T. Tautges, P. Fischer, I. Grindeanu, R. Jain, V. Mahadevan, A. Obabko, M.A. Smith, E.

Merzari, “SHARP Assembly-Scale Multiphysics Demonstration Simulations,” Technical

Milestone Report ANL/NE-13/9, Argonne National Laboratory, 2013.

10. M.A. Smith, et al, “PROTEUS: development of a new reactor physics analysis tool,” in

Proceedings of Winter Meeting on International Conference on Making the Renaissance

Real, 97:565–566, American Nuclear Society, Nov. 2007.

11. Y. Maday, A.T. Patera, “Spectral element methods for the Navier-Stokes equations,” in

A.K. Noor and J.T. Oden, editors, State-of-the-Art Surveys in Computational Mechanics,

pp. 71–143, ASME, New York, 1989.

12. A.G. Tomboulides, J.C.Y. Lee, and S.A. Orszag, “Numerical simulation of low Mach

number reactive flows,” Journal of Scientific Computing, 12:139–167, June 1997.

13. A.G. Tomboulides, M. Israeli, G.E. Karniadakis, “Efficient removal of boundary-

divergence errors in time-splitting methods,” Journal of Scientific Computing, 4:291–308,

1989.

http://nek5000.mcs.anl.gov/

SHARP User Manual

ANL-NE-16/6 48

14. G. Marleau, R. Roy, and A. Hébert, “DRAGON: A Collision Probability Transport Code

for Cell and Supercell Calculations,” Report IGE-157, Institut de génie nucléaire, École

Polytechnique de Montréal, Montréal, Québec, 1994.

15. Yiqi Yu, Elia Merzari, Aleksandr Obabko, Justin Thomas, A porous medium model for

predicting the duct wall temperature of sodium fast reactor fuel assembly, Nuclear

Engineering and Design, Volume 295, 15 December 2015, Pages 48-58,

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 208

Argonne, IL 60439

www.anl.gov

